Caenorhabditis elegans oocytes detect meiotic errors in the absence of canonical end-on kinetochore attachments
نویسندگان
چکیده
Mitotically dividing cells use a surveillance mechanism, the spindle assembly checkpoint, that monitors the attachment of spindle microtubules to kinetochores as a means of detecting errors. However, end-on kinetochore attachments have not been observed in Caenorhabditis elegans oocytes and chromosomes instead associate with lateral microtubule bundles; whether errors can be sensed in this context is not known. Here, we show that C. elegans oocytes delay key events in anaphase, including AIR-2/Aurora B relocalization to the microtubules, in response to a variety of meiotic defects, demonstrating that errors can be detected in these cells and revealing a mechanism that regulates anaphase progression. This mechanism does not appear to rely on several components of the spindle assembly checkpoint but does require the kinetochore, as depleting kinetochore components prevents the error-induced anaphase delays. These findings therefore suggest that in this system, kinetochores could be involved in sensing meiotic errors using an unconventional mechanism that does not use canonical end-on attachments.
منابع مشابه
KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly
During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere-associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(-) mutants, extra microtubul...
متن کاملKinetochore-independent chromosome segregation driven by lateral microtubule bundles
During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not...
متن کاملSpatial Regulation of Kinetochore Microtubule Attachments by Destabilization at Spindle Poles in Meiosis I
To ensure accurate chromosome segregation in cell division, erroneous kinetochore-microtubule (MT) attachments are recognized and destabilized . Improper attachments typically lack tension between kinetochores and are positioned off-center on the spindle. Low tension is a widely accepted mechanism for recognizing errors , but whether chromosome position regulates MT attachments has been difficu...
متن کاملLateral and End-On Kinetochore Attachments Are Coordinated to Achieve Bi-orientation in Drosophila Oocytes
In oocytes, where centrosomes are absent, the chromosomes direct the assembly of a bipolar spindle. Interactions between chromosomes and microtubules are essential for both spindle formation and chromosome segregation, but the nature and function of these interactions is not clear. We have examined oocytes lacking two kinetochore proteins, NDC80 and SPC105R, and a centromere-associated motor pr...
متن کاملThe outer kinetochore protein KNL-1 contains a defined oligomerization domain in nematodes
The kinetochore is a large, macromolecular assembly that is essential for connecting chromosomes to microtubules during mitosis. Despite the recent identification of multiple kinetochore components, the nature and organization of the higher-order kinetochore structure remain unknown. The outer kinetochore KNL-1/Mis12 complex/Ndc80 complex (KMN) network plays a key role in generating and sensing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 216 شماره
صفحات -
تاریخ انتشار 2017